
Fast Multiple 3D Plane Detection from Depth Images

Hyunkil Hwang1, Jun Hyeok Choi2, Chan Ho Seo2, and Sunglok Choi2

Abstract— Plane detection is a useful and necessary part of
many robotic applications such as localization, SLAM, and
world modeling. Its computing time is critical in the real-
time operation of its applications. This paper proposes 3D
plane detection using depth images acquired by stereo/RGB-
D cameras or 3D LiDARs. The proposed method directly
generates surface normal vectors from a depth image using
simple pixel-wise subtractions and multiplications. The surface
normal generation does not require any conversion to a point
cloud and neighborhood search, which is the key idea to
accelerate 3D plane detection in the proposed method. The
surface normal vectors are substantial priors for 3D planes.
The flood-fill algorithm on the surface normal map can simply
lead to 3D plane segmentation quickly. Our implementation in
Python experimentally has demonstrated almost 4-5 times less
computing time than the previous RANSAC-based approach.

I. INTRODUCTION

Planes are useful observations in many robotic applica-
tions. Many visual/LiDAR odometry and SLAM utilized
planes as high-level features or motion/structure priors.
Especially, indoor environments contain many (mostly or-
thogonal) planes which can correct robot orientation more
accurately [1]. The ground plane or floor is also a strong
prior for robot motion and poses [2], [3]. Many indoor 3D
reconstructions [4] also simplify their world models using
planes instead of more general polygon meshes or point
clouds. Planes with textures enable more compact but high-
quality world models.

Plane detection retrieves planes from 2D data (e.g. RGB
image) [5] or 3D data (e.g. depth image and point cloud) [1],
[6]. This paper focuses on 3D plane detection from depth
images. Even though this paper is based on depth images,
depth images can be easily generated from point clouds or
3D range data with the given projection parameters. The
3D data often contain multiple planes. The proposed method
investigates multiple 3D plane detection. In spite of multiple
planes, they can be simply reduced to a single plane (e.g.
ground plane) with proper conditions and constraints.

The computing time is one of the most important issues
in plane detection because it is usually an early stage
of applied algorithms and systems. Plane detection with

*This research was supported by the National Research Foundation of
Korea (NRF) Grant funded by the Ministry of Science and ICT for Bridge
Convergence R&D Program (NRF-2021M3C1C3096810).

1Hyunkil Hwang is with the Department of Mechanical and
Automotive Engineering, Seoul National University of Science and
Technology (SEOULTECH), Seoul, Republic of Korea. (E-mail:
hyunkil76@gmail.com)

2Jun Hyeok Choi, Chan Ho Seo, and Sunglok Choi are with the De-
partment of Computer Science and Engineering, Seoul National University
of Science and Technology (SEOULTECH), Seoul, Republic of Korea. (E-
mail: sunglok@seoultech.ac.kr)

long computing time will delay the overall algorithms and
systems, which is critical in real-time applications such as
localization and SLAM. RANSAC [7] is the most popular
method for 3D plane fitting [1], [6]. RANSAC can select
the most supportive single plane after sufficient iterations
of plane generation (from random point samples) and its
evaluation. The RANSAC-based approaches can be extended
for finding multiple planes while keeping a generated plane
if the plane is supported more than the given number of
points. However, the RANSAC-based approaches usually
suffer from long computing time due to their nature of the
sequential and iterative framework. The structure prior [1] or
simplified plane model [6] can speed up the RANSAC-based
approaches.

This paper proposes fast 3D plane detection using depth
images, not point clouds. In contrast to the point cloud, depth
images are possible to access neighborhood points with sim-
ple 2-dimensional indexing. The surface normal vectors can
be derived from the neighborhood points using simple pixel-
wise subtractions and multiplications. Actually, the neigh-
borhood points do not guarantee the closest point set, but
normal vector calculation does not require the closest point
set. Since the normal vectors are powerful information for
getting 3D plane equations, 3D planes are simply classified
using the flood-fill algorithm with simple pixel-wise distance
measures. The proposed method is described in Section II
in detail. Section III demonstrates the preliminary results
of the proposed method in comparison to the RANSAC-
based approach. Finally, Section IV summarizes our idea and
results with further research direction.

II. PLANE DETECTION FROM DEPTH IMAGES

A. Overall Procedure

The proposed 3D plane detection is composed of two
steps: 1) normal map generation and 2) flood-fill plane
segmentation. As we mentioned before, input data is a depth
image D whose each pixel at (u, v) contains its depth value,
D(u, v) = z. Therefore, each pixel leads to its 3D point
using the inverse camera projection as follows:

x =
u− cx
fx

z and y =
v − cy
fy

z where z = D(u, v) , (1)

where (fx, fy) are x- and y-directional focal lengths, and
(cx, cy) is the principal point on the depth image.

In the first step, the normal vector at each pixel is gen-
erated from its four neighborhood pixels. The neighborhood
pixels of (u, v) are selected using 2-dimensional array access
such as (u−s, v), (u+s, v), (u, v−s), and (u, v+s). After the

2023 20th International Conference on Ubiquitous Robots (UR)
June 25-28, 2023. Hawaii Convention Center, Honolulu, Hawaii

979-8-3503-3516-3/23/$31.00 ©2023 IEEE 910

first step, each pixel contains its normal vector n = [a, b, c]⊤

which is unit length (a2 + b2 + c2 = 1).
In the second step, the flood-fill algorithm classifies each

pixel into multiple 3D planes. A 3D plane is represented
by ax + by + cz + d = 0 whose three variables a, b, and
c are derived from the normal vector. From a given seed
pixel, the flood-fill algorithm spreads the coverage of the
given pixel to its neighborhood pixels until they satisfy two
metrics: 1) normal vector similarity Sn > τn and 2) depth
value distance Dz < τz . The two variables, τn and τz ,
are predefined threshold values for each metric. The normal
vector similarity is defined using the cosine similarity of two
unit vectors, ni and nj , as follows:

Sn(ni,nj) = ni · nj . (2)

The depth distance is defined using the difference of two
depth values, zi and zj , as follows:

Dz(zi, zj) = |zi − zj | . (3)

The flood-fill algorithm groups connected pixels belonging
to the same 3D plane based on two metrics.

B. Pixel-wise Normal Map Generation

A surface normal vector of the given pixel is calculated
using its neighborhood pixels on a depth image. It is much
faster than normal vector calculation using point cloud
because such calculation needs neighborhood search and
principal component analysis (PCA).

At first, the proposed pixel-wise normal vector calculation
needs a depth gradient as follows:

∇D(u, v) =

[
∂D
∂u
∂D
∂v

]
=

[
D(u+s,v)−D(u−s,v)

2s
D(u,v+s)−D(u,v−s)

2s

]
, (4)

where s is the step length to indicate neighborhood pixels.
Figure 1 presents the effect of the step length s. It is
possible to observe that a large value of s led to smooth
normal vectors without additional smoothing steps. However,
the large value of s missed the detail of the normal map
according to the size of objects. For example, boundaries of
bricks in Figure 1 were highlighted in s = 1 but degraded
in s = 10 and s = 30. The pipe in Figure 1 was identified
in s = 1 and s = 10 but partially disappeared in s = 30.

A normal vector is calculated using the cross-product of
two gradient vectors. The cross-product lead to an orthogonal
vector of two given vectors on a candidate plane, which is
the normal vector to the plane. The common approach can
simplify the cross-product as

n(u, v) =

 1
0
∂D
∂u

×

 0
1
∂D
∂v

 =

−∂D
∂u

−∂D
∂v
1

 . (5)

However, the common approach does not estimate the
normal vector correctly as shown in Figure 2. Figure 2 (a)
presents the gradually varying normal vectors on the same
plane by the common approach. This problem results from
different units of two vectors in Equation (5). Even though

∂D
∂u and ∂D

∂v has the unit of meters per pixel, but 1 has the
unit of pixels per pixel, that is dimensionless.

We proposed a more accurate calculation of normal vectors
with scaling using depth values. To compensate for different
units, we apply the scale factor α to the last element as
follows:

n̄(u, v) = αk ∗ n =
[
−∂D

∂x −∂D
∂y α

]⊤
, (6)

where k is a unit vector [0, 0, 1]⊤ and ∗ is the element-
wise multiplication. The scale factor α should be different
from each pixel. We define the varying scale factor using
normalized depth values D̄ as follows:

ᾱ(u, v) =
D̄(u, v)

max D̄(u′, v′)
where (7)

D̄(u, v) = D(u, v)−minD(u′, v′) , (8)

minD(u′, v′) is the minimum value over the given depth
image, and max D̄(u′, v′) is the maximum value over the
given normalized depth image. The depth-based scaling was
inspired by camera projection, that is, farther 3D point has
proportionally longer meters per pixel. The proposed method
generated the normal map as shown in Figure 2 (b).

III. EXPERIMENTS

We performed experiments with real depth data using
Stereolabs’s ZED2 stereo camera. The ZED2 camera was
configured as 1280 × 720 resolution for its left and right
cameras, respectively. Its depth images were acquired by
ZED SDK with neural depth mode. Figure 1 (b) is an
example of depth images by our configuration.

We implemented the proposed algorithm in Python with
NumPy and OpenCV. We assigned 32 seed points uniformly
distributed on the given images. For comparison, we also
implemented a common RANSAC-based plane detector with
multiple plane fitting. The number of iterations of RANSAC
was configured as 1000. The inlier threshold was assigned
as 0.02 meters (for narrow indoors) and 0.2 meters (for wide
outdoors), respectively. We measured the computing time of
each method using Python Standard Library, time.

Table I shows the computing time of the previous
RANSAC-based method and the proposed method, respec-
tively. The proposed method was almost 4-5 times faster
than the RANSAC-based method. The proposed method had
different computing times according to the step length s
because longer s made less normal vector calculation around
image boundaries. As shown in Figure 3, we also observed
that RANSAC-based plane fitting classified wrong points
because it does not consider proximity (or connectivity) of
3D points.

IV. CONCLUSION

This paper proposed fast 3D plane detection using depth
images. Since it is possible to access neighborhood 3D points
on depth images using 2-dimensional array indexing, the
normal vector of each pixel is simply derived using pixel-
wise subtractions and multiplication. The common normal

911

(a) Color image (b) Depth image

(c) Normal map (s = 1) (d) Normal map (s = 10) (e) Normal map (s = 30)

Fig. 1: An example of color and depth images with its normal maps with varying values of the step length s

(a) Common approach (α = 1)

(b) Proposed approach (α = ᾱ(u, v))

Fig. 2: Normal vectors from (a) the common approach and
(b) the proposed scaling approach

vector calculation estimates incorrect normal vectors due
to inconsistent units of normal vectors. We adopted the
varying scale factor ᾱ to compensate the inconsistency. Our
experimental results presented that the proposed method is
almost 4-5 times faster than the previous RANSAC-based
plane fitting.

REFERENCES

[1] K. Joo, P. Kim, M. Hebert, I. S. Kweon, and H. J. Kim, “Linear RGB-
D SLAM for structured environments,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 44, no. 11, 2022.

[2] S. Choi, J. Park, and W. Yu, “Simplified epipolar geometry for real-time
monocular visual odometry on roads,” International Journal of Control,
Automation and Systems, vol. 13, no. 6, 2015.

TABLE I: COMPUTING TIME (UNIT: [MSEC])

ALGORITHMS COMP. TIME
RANSAC 389
Proposed (s = 1) 102
Proposed (s = 10) 94
Proposed (s = 30) 78

Fig. 3: An example of RANSAC-based 3D plane fitting

[3] S. Choi and J.-H. Kim, “Fast and reliable minimal relative pose
estimation under planar motion,” Image and Vision Computing, vol. 69,
2018.

[4] S. Ikehata, H. Yang, and Y. Furukawa, “Structured indoor modeling,” in
Proceedings of the IEEE International Conference on Computer Vision
(ICCV), 2015.

[5] S. Choi, J. H. Joung, W. Yu, and J.-I. Cho, “What does ground
tell us? monocular visual odometry under planar motion constraint,”
in Proceedings of 2011 11th International Conference on Control,
Automation and Systems (ICCAS), 2011.

[6] S. Choi, J. Park, J. Byun, and W. Yu, “Robust ground plane detection
from 3d point clouds,” in Proceedings of 2014 14th International
Conference on Control, Automation and Systems (ICCAS), 2014.

[7] M. A. Fischler and R. C. Bolles, “Random Sample Consensus: A
paradigm for model fitting with applications to image analysis and
automated cartography,” Communications of the ACM, vol. 24, no. 6,
1981.

912

